Exactly Robust Kernel Principal Component Analysis
نویسندگان
چکیده
We propose a novel method called robust kernel principal component analysis (RKPCA) to decompose a partially corrupted matrix as a sparse matrix plus a high or fullrank matrix whose columns are drawn from a nonlinear lowdimensional latent variable model. RKPCA can be applied to many problems such as noise removal and subspace clustering and is so far the only unsupervised nonlinear method robust to sparse noises. We also provide theoretical guarantees for RKPCA. The optimization of RKPCA is challenging because it involves nonconvex and indifferentiable problems simultaneously. We propose two nonconvex optimization algorithms for RKPCA: alternating direction method of multipliers with backtracking line search and proximal linearized minimization with adaptive step size. Comparative studies on synthetic data and nature images corroborate the effectiveness and superiority of RKPCA in noise removal and robust subspace clustering.
منابع مشابه
Online Algorithm for Robust Kernel PCA
We introduce a technique to improve the online kernel PCA (KPCA) robust to outliers due to undesirable artifacts such as noises, alignment errors, or occlusion. The proposed online robust KPCA (rKPCA) links the online updating and robust estimation of principal directions. It inherits good properties from these two ideas for reducing the time complexity, space complexity, and the influence of t...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملA Note on Robust Kernel Principal Component Analysis
Extending the classical principal component analysis (PCA), the kernel PCA (Schölkopf, Smola and Müller, 1998) effectively extracts nonlinear structures of high dimensional data. But similar to PCA, the kernel PCA can be sensitive to outliers. Various approaches have been proposed in the literature to robustify the classical PCA. However, it is not immediately clear how these approaches can be ...
متن کاملRobust Principal Component Analysis Using Statistical Estimators
Principal Component Analysis (PCA) finds a linear mapping and maximizes the variance of the data which makes PCA sensitive to outliers and may cause wrong eigendirection. In this paper, we propose techniques to solve this problem; we use the data-centering method and reestimate the covariance matrix using robust statistic techniques such as median, robust scaling which is a booster to datacente...
متن کاملNonlinear Robust Regression Using Kernel Principal Component Analysis and R-Estimators
In recent years, many algorithms based on kernel principal component analysis (KPCA) have been proposed including kernel principal component regression (KPCR). KPCR can be viewed as a non-linearization of principal component regression (PCR) which uses the ordinary least squares (OLS) for estimating its regression coefficients. We use PCR to dispose the negative effects of multicollinearity in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.10558 شماره
صفحات -
تاریخ انتشار 2018